Dependence of offshore wind turbine fatigue loads on atmospheric stratification

نویسنده

  • K S Hansen
چکیده

The stratification of the atmospheric boundary layer (ABL) is classified in terms of the M-O length and subsequently used to determine the relationship between ABL stability and the fatigue loads of a wind turbine located inside an offshore wind farm. Recorded equivalent fatigue loads, representing blade-bending and tower bottom bending, are combined with the operational statistics from the instrumented wind turbine as well as with meteorological statistics defining the inflow conditions. Only a part of all possible inflow conditions are covered through the approximately 8200 hours of combined measurements. The fatigue polar has been determined for an (almost) complete 360° inflow sector for both load sensors, representing mean wind speeds below and above rated wind speed, respectively, with the inflow conditions classified into three different stratification regimes: unstable, neutral and stable conditions. In general, impact of ABL stratification is clearly seen on wake affected inflow cases for both blade and tower fatigue loads. However, the character of this dependence varies significantly with the type of inflow conditions – e.g. single wake inflow or multiple wake inflow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of different wind profiles due to varying atmospheric stability on the fatigue life of wind turbines

Offshore wind energy is being developed on a very large scale in the European seas. The objective of developing wind energy offshore is to capture greater wind speeds than are encountered onshore and as a result more energy. With this also come more challenges in the design of wind turbines due to the hostile offshore environment. Currently the standards for offshore wind turbines prescribe a s...

متن کامل

An Experimental Investigation on Dynamic Wind Loads Acting on a Wind Turbine Model in Atomspheric Boundary Layer Winds

An experimental study was conducted to investigate the dynamic wind loads acting on a wind turbine model sited in atmospheric boundary layer winds. The experimental studies are conducted in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) Wind Tunnel available at Iowa State University. A three-blade Horizontal Axial Wind Turbine (HAWT) model was placed in atmospheric boundary layer w...

متن کامل

High-fidelity Modeling of Local Effects of Damage for Derated Offshore Wind Turbines

Offshore wind power production is an attractive clean energy option, but the difficulty of access can lead to expensive and rare opportunities for maintenance. As part of the Structural Health and Prognostics Management (SHPM) project at Sandia National Laboratories, smart loads management (controls) are investigated for their potential to increase the fatigue life of offshore wind turbine roto...

متن کامل

اثرات بارهای ناشی از موج و باد بر ضرایب شدت تنش یک سازه فراساحلی ترکدار

Due to the much higher maintenance and replacement expenses of the offshore wind turbine structures, more attention should be paid for a reliable lifetime analysis of them. Meanwhile, the cyclic nature of wave and wind loads together with the corrosive effects from the sea water are major factors for the creation and growth of flaws and cracks in offshore structures. These cracks can be the cau...

متن کامل

Computationally Inexpensive Approach for Pitch Control of Offshore Wind Turbine on Barge Floating Platform

Offshore floating wind turbine (OFWT) has gained increasing attention during the past decade because of the offshore high-quality wind power and complex load environment. The control system is a tradeoff between power tracking and fatigue load reduction in the above-rated wind speed area. In allusion to the external disturbances and uncertain system parameters of OFWT due to the proximity to lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017